The consequences of denoising marker-based metagenomic data
نویسندگان
چکیده
Background Early marker-based metagenomic studies, such as those of the human microbiome, were performed without properly accounting for the effects of noise (pyrosequencing errors, PCR single-base errors, and PCR chimeras). One popular solution to address these issues is to utilize AmpliconNoise [1]. This collection of algorithms was validated on mock community datasets in which the ‘correct’ result, such as the number of operational taxonomic units (OTUs), was known. However, when conducting a real study, one will not know the correct result, but still must consider how the data has been transformed by denoising.
منابع مشابه
Assessing the Consequences of Denoising Marker-Based Metagenomic Data
Early marker-based metagenomic studies were performed without properly accounting for the effects of noise (sequencing errors, PCR single-base errors, and PCR chimeras). Denoising algorithms have been developed, but they were validated using data derived from mock communities, in which the true sequences were known. Since the algorithms were designed to be used in real community studies, it is ...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کامل